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Abs t r ac t

This paper has presented an approach to dealing
with the complexity of explanation-bawd learn-
ing plans in complex domains. This approach
uscs a simplified algorithm to construct plans, and
employs later refinements to repair bugs in con-
structed plans. lhis  algorithm has the theoretical
propert ics of completeness and convergence upon
soundness. ‘J’his  incremental reasoning planning
and learning algorithm has been implemented us-
ing a partial-order constraint posting planner and
empirically compared to a conventional exhaustive
reasoning partial-order constraint-posting planner
and learning algorithm. This comparison s}lowed
that: 1 ) incremental rea~oning  significantly re-
duced learning costs compared to exhaustive rea-
soning; 2) Explanation-based Learning (F.DL) re-
duced failures from incremental reasoning; and
3) FHI1, with incremental reasoning required less
search to solve problems than E13L with exhaus-
tive rcaoning.

Introduction
Explanation-based learning and incremental reasoning
offer a powerful combination in dealing with complexity
in planning. Incrcmcntal  reasoning allows the planner
to rcducc  the computational expense of plan construc-
tion by using simplifications. Our approach uscs a gen-
eral  class of simplifications determined by a simplified
truth criterion. A rcfincmcnt  algorithm based upon this
simplified truth criterion allows simplifications to bc rc-
tractcd in response to failures. The cnd intended result
is a set of simplified plans which fail infrequently and
arc learned at a rcduccd  cost duc to simplifications. Wc
call our approach incremental reasoning bccausc  rcfhm-
mcnts  convcrgc  upon the exhaustive reasoning approach
(e.g., retracting all simplifications). Explanation-based
learning @~IJ)  offers failure reduction in the long term
by allowing learned plans to bc used in place of failurc-
pronc  from scratch problcm-solving.  Additionally, as
when used with exhaustive reasoning, EJIL can also lead
to reduced search to SOIVC problems.

oq,}lis ~lapcr describes research conducted in Part by the
Jet Propulsion Laboratory, under contract with the Na-
tional Aeronautics and Space Administration and in part
conducted at the Beckman Institute of the University of Illi-
nois supported by an IBM Graduate Fellowship and The Na-
tional Science Foundation under grant NSF-IRI-87-1976G.

The combination of incremental reasoning and E13L
holds both  intuitive and computational appeal. From
the intuitive standpoint, people seem to often make as-
sumptions and simplifications to make reasoning more
tractable. With titnc, incrcascd  cxpcrtisc leads to bet-
ter knowledge about which simplifications will still allow
adequate reasoning. All of these characteristics are con-
sistent with explanation-based lcarniug  and incremental
reasoning. From a computational standpoint, incremen-
tal reasoning can bc shown to reduce computation under
certain conditions. Explanation-based learning can also
bc shown to reduce failures in certain cases.

This paper focusscs upon a particular type of incre-
mental rcassoning, incremental reasoning about opera-
tor effects (Chien 1990) which is an extension of tech-
niques  dcscribcd  in (Chien89). In this approach the
planner constructs initial plans ignoring a type of nega-
tive subgoal interaction, When failures occur, the plan-
ner  expands its consideration of subgoal interactions to
construct a viable plan. This process continues until a
plan is found. Bccausc  the expansion of consideration of
subgoal interactions converges upon exhaustive reasoni-
ng our incremental reasoning algorithm converges upon
soundness. Bccausc  the simplifications arc over-general,
our incremental reasoning algorithm retains conlplcte-
ncss.

Our incremental reasoning approach is applicable in
cases where:

1. A sound and complctc  (although intractable) domain
theory exists.

2. A strong diagnostic capability exists to construct ex-
planations for failures.

3. The cost of failures is low.
4. The systcm  is allowed multiple attempts to SOIVC  a

problcm.

While many systems have been constructed which use
incremental reasoning in planning (Sitnmons  1988) and
incremental rcaaoning  in combination with cxplanation-
bascd  learning (Hammond 1989; Collins ct al. 1989),
there has been little effort devoted to empirical analyses
of reduced computation from the usc of simplifications
and rcduccd  failures duc to ]carning.  Many empirical
studies of exhaustive reasoning systems combined with
E13L have examined rcduccd  search to SOIVC  problems
duc to learning (e.g., (Minton 1988)).

In order to empirically evaluate the computational
properties of incremental reasoning in combination



with explanation-based learning wc used two planning
ancl Icarning  systcmsc The first, tlm control systcm,
was a pattial-order constraint-posting exhaustive plan-
ner which USCC1  conventional explanation-based learn-
ing. l’hc  second, the experiment systcm,  was ,also
a partial-order constraint-posting planner which ilscd
explanation-based learning, but constructed plans us-
ing simplifications. In order to to remove cflccts  of
search heuristics, both systems scarchcd  plans brcadth-
first in the number  of operators in the plan, thus plans
scarchcd  statistics report upon the size of the scarcll
spaces scarchcd  by the respective systems.

To test these systems, wc constructed two domain
tllcorics.  ldcally,  the systems would l)c tested upon clo-
main theories used in other empirical tests (e.g. con-
structed by other researchers), however, almost all do-
main theories are restricted to STRIPS operators bc-
causc most planners and learners cannot deal with con-
ditional effects. Our incremental reasoning approach is
designed precisely to deal with the additional con~plcx-
it y of operators with conditional effects. Consequent] y,
we constructed two new domain theories by extending
domain theories used by Minton in his empirical studies
(Minton 1988).

In our empirical tests? wc did indeed observe the
cxpcctcd  three characteristics predicted by advocators
of incremental reasoning and explanation-based learn-
ing. The observed chwactcristics were: reduced overall
learning cost duc to incremental reasoning, EBL pro-
duced a reduced failure rate from incremental reason-
ing, and 13BL + incremcntl reasoning offered reduced
overall search in problem solving compared to exhaus-
tive reasonin~  + EBL.

1.

2.

3.

‘1’hc  princiial contributions of this paper are:
It presents a novel simplification method applicable
for explanation-based learning of plans. This xncthod
is unique in that it uses a simplification of a truth
criterion to guide reasoning.
It supports this method with empirical results of
a)rcduccd  learning cost duc to simplification; b) rc-
duccd failures duc to EBL; and c) reduced search due
to simplifications+  EBL.
It Drcscnts some of the first work to amiv more Dow-
cr~ul partial-order and constraint-p~~tihg  pla]~ning
techniques in conjunction with EBL.
The remainder of this paper is organized as fol-

lows. Section 2 describes the incremental reasoning
techniques evaluated in this paper. Section 3 sketches
the proofs for why our incremental reasoning approach
is complctc  and  converges upon soundness. Section 4
dcscribcs  the domains used in the empirical evaluation
and uscs an example to illustrate our refinement ap-
proach. Section 5 presents the empirical results derived
from our study, Section 6 describes related work and
section 7 summarizes the principal contributions of this
paper.

An Overview of Incremental Reasoning
Our refinement approach presumes a representation
based upon situation calculus in which situations arc
complete and consistent propositional world descrip-
tions.  In our rcprcscntation, an action A can bc cxc-
cutcd  in a situation S1 only if the preconditions for A

arc true in S1, The situation resulting from this action
execution is computed by first asserting all of the direct
effects of A, asserting all of the conditional cflccts of
A W11OSC  conditional preconditions arc met in S1, and
finally asserting all of those facts in S1 which are not
contradicted by any of the director conditional cficcts of
A. Actions arc not allowed to have contradictory effects.
l’bus, a fact can bc true in a situation via a direct effect,
conditional effect, or pcrsistcncc.  Shown below is part
of a sample state description from an cxtcndcd  STRIPS
domain. ]n this example, the robot moving from room]
to room2 causes boxl  to move to roo1n2 but box2 does
not move. This is because a conditional effect of the
move-robot operator is that boxes being carried move
with the robot and box] is being carried but box2 is
not. Note also that the assertion of the fact n(location
boxl  rooml ) is also conditional on the carrying state
of boxl. Thus, the deletion of the fact (location boxl
room] ) is also conditional on the carrying state of boxl.
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(location  borl  7-0077,1) n(focation  boxl  Too?nl)
-(location  bozl  roo7n2) (location borl 7-007712)
(location bor2  rmrnl) (focation  boz2 ?-ooml)

- ( location box2 roon~2) allocation boz2  room2)
(location robot Tcmml  ) -(location robot  roonll)

- ( location robot  T00?IL2)  (location robot  r00m2)
(robotCarrying  bozl) (robotcarrying)

-(robotCarrying boz2) -(robot.  amying  boz2)
. . . .

An important point is that this representation allows
an Operator to have dk!Ck  conditional upon the state
in which they arc executed. While this conditionality is
finite, and can bc rcprcscnted  in conventional STRIPS
operators, it would require a nutnbcr  of STRIPS opera-
tor definitions exponential in the number of conditional
effects (i.c,, a non-conditional operator for each possi-
ble combination of occurring conditional cflccts). This
rcprcscntation dots not allow direct rcprcscntation  of
inferred effects. However, if there arc a finite number of
inferred effects, these can bc represented as conditional
cflccts  by requiring a conditional eflcct  for each unique
derivation for an inferred effect.

Plan construction and generalization occurs accord-
ing to a truth criterion, which states the cases in which
facts arc true in situations in a plan. Our truth criterion
is similar to that stated in (Chapnlan87),  except for two
changes. First, it handles conditional effects of actions.
Second, it dots not allow white knights (a form of dis-
junctive support). Basically, this truth criterion states
that a fact will bc true if it N established and then pro-
tcctcd. Establishing a fact means ensuring it is true at
some point before it is needed, and protecting a fact
means ensuring that it will remain true until needed. A
fact F is established at a situation S,~L iff
1. S,~t is SO (the given initial state) and F E 1 (the

initial state description).
2. S,,t is the output state of some action A which has

the direct effect F.
3. S,~t is the output state of some action A which has the

conditional effect F, whose conditional preconditions
arc true in the input situation for A.

A fact F is protcctcd from Set to Sd,$ if there is no
aCLiOll Ac~ob SUCh that:
1. AC~Ob  is ordered after S,~i and before Sd,~ and



2. Aclob has either:

(a) a direct effect D which contradicts F or
(b) a conditional effect C which contradicts F and

whose conditional preconditions arc true in the in-
put situation to AC106.

The truth criterion is interpreted procedurally to con-
struct plans,  Thus, the planner might usc a conditional
cflcct  of an action already in the plan to achicvc a goal,
or add an action to the plan which had a conditional ef-
fect which achicvcs  the goal. Correspondingly, the plan-
ner  would also have to protect thcncwly  achieved goal
from each action effect already in the plan and protect
already achieved goals from action effects being intro-
duced  into the plan by addition of operators to the plan.
For each action effect and protection, either: 1) the ac-
tion must occur outside the protection interval, 2 the

1effect must not contradict the protected fact; or 3 the
effect is a conditional effect and a conditional precon-
dition  of the conditional effect must not bc true in the
input state to the action.

Within this framework, planning can bc viewed as
search in the plan space (the space of all possible plans).
Search operators are modifications to the plan (e.g., add
an operator, constrain an operator) and may introduce
subgoals. Search begins with a null plan, and terminates
when citl]cr: 1) a resource bound is excecdcd,  2) no
alternatives exist, or 3) a plan which achieves all of the
problcm  goals is found.

‘J’hc protection a.spcct of planning is computationally
cxpcnsivc  bccausc  it requires reasoning about the ef-
fects  of all potentially interfering operators. Bccausc
operators may have conditional effects, reasoning about
the effects of an operator requires reasoning about the
situation in which that operator is executed, Consider
attempting to achieve a fact P at time T1 using an ac-
tion A. Establishment requires reasoning to ensure that
A is I.)cforc T1 and requiring that Sin(A)  is sufficient to
allow A to assert P. Reasoning about protecting P from
the execution of A until T1 requires: 1) determining all
actions that might occur after A and before T1; 2) de-
termining  whether any possible effects of these actions
possibly contradicts P; and 3) determining all of the po-
tential situations in which actions satisfying 1 & 2 might
he cxccutcd  and determining which of these situations
is suficicnt to produce the contradicting effect(s). Un-
fortunately, task 3 involves repeatedly determining the
truth value of a fact in a partially ordered plan with
conditional effects which is a known NP-hard  problcm
(Chapman87).

An important point is that this problem of expensive
reasoning about protections is representation indcpcn-
dent. The complexity arises from the expressive power
of conditional cflects,  not the exact representation of
operators and persistence that we employ. In (Chap-
man87), Chapman shows that for any representation
sufficient to rcprcscnt conditional effects, determining
the truth value of a fact in a partial-order plan is an
NP-hard problcm.  For example, using frame axioms to
prove persistence would require many explanations for
multiple orderings. To guarantee soundness any frame
axiom persistence proof would need to check the same
potentially rc]cvant  facts as our approach of checking
against operator effects.

Not only is it computationally  cxpcnsivc  to perform
exhaustive protection from conditional effects, condi-
tional effect intcrfcrcncc  is more likely to bc prcvcntalic
(i.e., via rcfincmcnt)  than would a direct effect. intcrfcr-
cncc. l’his  is bccausc  for a direct effect, th,c intcrfcrcncc
can bc removed only by ordering or by ensuring codes-
ignations do not allow interference. For a conditional
cflcct, there arc these two options plus the additional
option of planning to invalidate a conditional precondi-
tion of the conditional effect.

The motivation for this inference limitation is not
that this is the exact bound which should necessarily
bc placed upon inference, but rather that infcrcncc  typ-
ically is limited by computational rcsourccs  and an in-
telligent  planning system must have the capability to
reason about these limitations and extend its inference
as directed by world feedback. The focus of this research
is upon developing methods for making and retracting
simplifications, not deciding when to make simplifica-
tions.

Thus, with regard to the truth criterion described
above, the diflercnce  bctwccn the exhaustive and incre-
ment  al approaches can bc summarized as follows. The
exhaustive approach Cnsurcs that all conditional effects
of operators do not invalidate protections in the plan,
The incremental approach checks only those conditional
effects which arc used for cstablishtnent purposes in the
plan, This simplification corresponds to not considering
general class of negative goal interactions.

However, incomplete reasoning about protections al-
lows the possibility that plans will fail unexpectedly.
Because the incomplete reasoning about protections is
the only source of unsoundness used in constructing the
initial plan, any future plan failures must be due to
unconsidered conditional effects of operators violating
protections in the plan. Consequently, when the system
encounters a failure it uses a full execution trace of the
failure to find a previously overlooked relevant negative
effect-protection interaction, At this point, the incrc-
mcnta] systcm performs the same interaction analysis
for this eflcct  protection pair that the exhaustive sys-
tem dots during initial plan construction as described
above,

Incremental Reasoning is Complete and
Converges Upon Soundness

‘IThc incremental reasoning approach we have dcscribcd
has the theoretical properties of convergence upon
soundness and completeness. 13ccausc  of space con-
straints, wc do not present full proofs of these prop-
erties,  but outline the proofs of these properties. For
further details sce (Chien 1990),

Incrcmcntal  reasoning about protections converges
UpOll  soundness. This means that after a finite num-
ber of failures (and corresponding refinements) an in-
crementally  constructed explanation convcrgcs  upon
soundness. The proof goes as follows. A bug in a plan is
a case where a conditional effect interferes with a protec-
tion. Bccausc  there are a finite number of operators in
the plan, and there are a finite number of conditional ef-
fects pcr operator, the number of possible bugs is finite.
Bccausc  refinement enforces the same protection con-
straints used in exhaustive reasoning, each refinement



removes a bug. Thus, after  a finite number of failures
and rcfincmcnts  all possible bugs will bc removed and
the rcfinccl plan will bc sound.

lncrcmcntal rcmoning  about protections is complctc.
This is bccausc  the incremental reasoning set of condi-
tions is a relaxation of the constraints from the exhaus-
tive  reasoning truth criterion. As rcfincmcnts  arc made,
they force the set of protection checks to convcrgc upon
those required by the exhaustive approach, but still arc
a subset (or possibly equal) to those required by the
exhaustive approach. Thus, the incremental approach
will still consider a set of plans a supcrsct  (although
possibly equal) of the exhaustive set and thus the incre-
mental approach is complctc.

Note that while the incremental approach allows a su-
pcrsct  of the plans considered by exhaustive approach,
this dots not mean that the incremental approach is
performing more search. This is because the search is
conducted in the space of constraints upon the plans,
thus the incremental approach is searching a smaller
space by enforcing a]]d checking lCSS constraints (bc-
causc  enforcing lCSS constraints means considering more
plans).

Domains and Example
Wc now dcscribc  the domain theories used to test the in-
crcmcnt  al reasoning approach. 1 dcall  y our incremental
reasoning approach would bc tested upon domain the-
ories constructed by other researchers. However, there
are very fcw domain theories used by planning or nla-
chinc learning researchers with conditional eflccts. No-
table exceptions are (Schoppcrs  1989; Pcdnault 1991).
However their representations arc very different from
ours, which prcvcntcd  usc of their domain theories.

Consequently, wc constructed two domain theories
by modifying domain theories used by Minton (Minton
1988) in his learning research. The empirical evalua-
tion compared the performance of the incremental and
exhaustive approaches in two domains - a workshop do-
main and a modiflcd  STRIPS domain.

‘1’he  STRIPS domain consisted of five operators. A
robot could pickup, putdown, align (for pushing), and
unalign  blocks that were carriablc or pushable  (a robot
could carry one block plus push another at any onc
titnc).  Changing rooms caused aligned or carried blocks
to change rooms with the robot. in order to align or
pickup a block, the robot had to bc next to the block,
which was defined as being in the same room. This
domain theory could be formulated with the changc-
room operator having four conditional effects, and no
other operators having conditional effects. Problems in
the STRIPS domain were specifications of goal loca-
tions for blocks and robots. The most complex problem
set, problcm  set C, involved a three room world with
two block location goals and a robot location goal (the
longest solution required would thus bc 12 operators).
The STRIPS domain is highly recursive and requires
deep subgoaling.  Additionally, there are many protec-
tion choices bccausc  there arc many potcntia]ly  relevant
conditional cflccts  each with several conditional precon-
ditions.

The workshop domain consists of eight operators with
a total of thirteen conditional effects. In this domain the

goal of the systcm  is to join picccs together in certain
orientations and achicvc  certain attribute goals (sLlch
as lcngtll  and smoothness). Assuming no interactions,
join goals took roughly 3 operators to achieve and most
attribute goals could bc achicvcd  in a sing]c  operator.
Some of the workshop domain problems arc unsolvable.
The most difilcult  workshop domain problems took 10
operators to achicvc. In the most difficult problcm  set,
WKC, problems contained three objects, three attribute
goals, and three join goals. In the workshop domain, the
goal structure is very shallow (e.g., did not require deep
sub.gosling) and the planner attempts to avoid interac-
tions. In this domain the incremental planner makes a
large number of assumptions about attribute values for
objects persisting through conditional effects. An En-
glish clcscription of the cut operator from the workshop
domain is shown below:

Operator: cut ohjecl to length
Preconditions: saw is not hot
Effects: object lerrgt}l  is length
Conditional I]ffects: if object is large  then saw now hot

if object is metal then saw now hot
if object is large then

surface of the object now rough

Wc now dcscribc  a example of incremental refinement
in a workshop domain problcm.  11~ this problcm,  the
system is given the goal of producing an object of a
certain length which also has a smooth surface. The
planner decides to achicvc  the length goal by using a
cut operator and to achieve the surface smooth goal
by using a sand operator. The systcm  then attempts
this plan, executing the sand operator and then the cut
operator on a large object.

This results in an end state where the length goal is
achieved but not the smooth goal. The smooth goal has
been invalidated by a conditional effect of the cut op-
erator, which states that when a large object is cut, it
is no longer smooth. This operator was introduced to
achieve the length goal. l’his triggers a rcfincmcnt  of the
plan, which involves enforcing the protection relation-
ship bctwccn  the cut operator and the protection of the
smooth state from the execution of the sand oj~crator  to
the end of the plan. Enforcing the protection produces
three options: 1) move the cut operator before the sand
operator or after the goal state; 2) try to sand a differ-
ent object from the ol.rjcct that is cut; or 3) cnforcc  that
the object used not bc large. Option 1 means cut before
sand, and will result is a correct plan. Option 2 cannot
bc applied bccausc  the goal requires that a single object
fulfill the length and smooth goals. Option 3 would also
result in a correct plan. Note that this enforcement of
the protection constraints and evaluation of protection
options is identical to that which would bc performed
by the exhaustive approach. The diflcrence  is that the
incremental approach cnforccs  these constraints only in
response to failures.

Empirical Evaluation
l’his section dcscribcs  the empirical evaluation of incre-
mental reasoning and explanation-based learning. First
wc dcscribc  the characteristics that wc wished to n~ca-
sure. Second, wc dcscribc  the experimental methodol-
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ogy used to measure these characteristics. Third, wc
dcscribc  the results of our empirical tests.

The three phenomena wc wished to verify empirically
arc the following:

1.

2.

3.

lncrcmcntal reasoning rcduccs  the computational cx-
pcnsc  pcr example of applying explanation-based
learning.
Explanation-based learning reduces the long-term
failure rate for incremental reasoning.
Exdanation-based  learnirw  reduces the lonz-term
scai.cb requirements for inc;cmenta]  reasoning:

In order to measure these three phenomena we used
an exhaustive control system and an incremental ex-
periment system. Both systems were partial-order
constraint-posting planners. Additionally, to ensure the
results were not skewed by use of search heuristics, both
systems used search breadth-first in the number of op-
erators in the plan.

Wc now present results from the WKII  problcm set
from the workshop domain. ]n order to measure the
impact of incremental reasoning on the cost of applying
EBL,  wc measured the number of plans searched to con-
struct an explanation (plan) and the CPU time for the
entire learning process (including search to construct an
explanation (plan)). Because the search to find a solu-
tion is the majority of the learning cost, these statistics
arc very similar. ]n both these cases, the learning cost
was measured over 700 problems and is shown in Figure
1 as a function of problem complexity as measured by
the solution length. The cost of learning is cxponentia]
as a function of problem complexity, as is indicated by
the roughly linear shape of the cost on the logarithtnic
scale.

As indicated by these graphs, using the sin~plifica-
tions in lcarnin~  si.qniflcautly reduced the cost of learn-
ing. It is wort~  n~ting  that there was only one prob-
lcm of solution length 8, there were bctwccn  8 and 218
problems of the other soution lengths. bccausc  Figure
1 shows that the incremental reasoning approach of-
fers greater than constant spccdup  on an logarithmic
scale  in problcm  solution (explanation construction) for
explanation-based learning, this indicates that an expo-
nential spccdup has occurred. For unsolvable problems
(c,g., those problems for which the planner was able to
show that no solution exists within the depth bound),
systcm  performance is measured as the amount of search
conc]ucted before concluding no solution exists. ]n these
test the incremental approach outperformed the exhaus-
tive  approach opn the average in search 138.1 plans
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scarchcd  to 360.9 plans searched and in solution time
4.1 CPU seconds to 8.24 CPU seconds.

In order to measure the long-term learning effects on
failure and search rates, a training and validation set
each of 300 problems was generated. After each system
was allowed to train upon a training set problem, the
system was tested upon the cnt  ire validation set. Vali-
dation set performance was measured in three ways:

1. number of plans searched and computation time to
solve all of the problems in the validation set;

2. number of failures encountered while solving all of the
problems in the validation set; and

3. number of problems solved by matching learned plans
from the plan library.

Figures 2 shows the nutnbcr  of plans scar.ched  and
CPU time used by the incremental and exhaustive
approaches to solve all of the problems in the vali-
dation set, In both cases the incremental approach
performs better before learning and maintains its ad-
vantage throughout learning, For comparison, a non-
lcarning  iucrcmcntal  or exhaustive systcm  performance
would be a horizontal line from the Y intercept. ‘I%us,
the use of simplifications and learning outperforms both
exhaustive without, exhaustive with learning, and sim-
plifications without learning.

The  graph at the left of Figure 3 shows the total num-
ber  of failures encountered by the incremental approach
in solving all of the problems in the validation set, This
graph shows that the general trend is decreasing, indi-
cating that learning is indeed reducing the nutnber  of
failures made by the incremental approach. For com-
parison, performance of a non-learning incremental sys-
tem would bc iudicatecl by a horizontal line from the Y
intercept.

The  graph at the right of Figure 3 shows the number
of problems in the validation set solved by matching a
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l)lan in the plan library. NcIte that the exhaustive ap-
proacl] match rate is nondecrcasing  bccausc  with the
exhaustive approach the plan library ncvcrs clccrcascs
in size. In contrast, with the incremental approach,
failures in already learned plans causes thcm to bc rc-
movccl  from the library so that the incremental match
rate sometimes dccrcascs.

Rclatccl  Work and Conclusions
While there have been numerous failure-driven plan-
ning systems (such as (Simmons 1988; Hammond 1989;
Collins et al. 1989; Bennctt90;  Sussman  1973)) our ap-
proach is unique in that it uses an approximation of au
exhaustive truth criterion to construct plans. Addition-
ally, while there have been numerous  empirical evalua-
tions  of standard 13BL systems (such as (Minton  1988))
there have been relatively fcw evaluations of incremen-
tal reasoning or failure-driven refinement plan lcarniug
systems. However, there have been mnncrous  empirical
evaluations for other abstraction-based learning systems
applied to problem-solving such as (Tadepalli  1989),
and (Unruh  & Rosenbloom  1989). Other  related work

[
includes Kambhampati & Kedar 1991) which describes
the usc o truth criteria to guide explanation-based gen-
eralization of plans but dots not address issues of incre-
mental rcasoniug  or refinement.

‘1’hc  incremental reasoning approach dcscribcd  in this
paper is substantially revised from the approach dc-
scribcd  in (Chicn89)  and is dcscribcd  in more detail in
(Chicn  1990). The primary change in the approach is to
make the simplifications more C1OSC1Y tied to truth crite-
rion conditions. This general approach highlights how
using the truth criterion as a guide to simplficiations
can bc useful in attacking the computational cxpcnsc  of
planning.

An important area for future work would bc to eval-
uate the incremental reasoning techniques dcscribcd  in
this paper using generally available partial order plan-
ners such as UCPOP (Pembcrthy  & Weld 1992). ‘1’his
work (Chien  1990) was originally done before the exis-
tcncc of such planners but testing incremental reasoning
on such planners (and the numerous domain associated
domain theories) would be informative.

It is worth noting that in the two domains wc used to
test incremental reasoning The iYfilit~ problem (Minton
1988) did not arise. We expect that in genera] there will
bc interactions bctwccn  incremental reasoning and the
utility problem, as learning possibly faulty plans allows
learning of more plans of potentially lower utility.

It is also worth noting that in both the workshop
and modified STRIPS domain it was frequently possible
to deny conditional cfl’cct interactions by planning to
prevent their conditional preconditions. In general, as
performing this type of fix becomes more difficult, the
cffcctivcncss  of incremental reasoning about conditional
effects will decrease. However, the general approach of
simplifications based upon relaxing truth criteria is still
valid, and might indicate other types of simplifications
to apply.

‘1’his paper has presented an approach to dealing with
the complexity of explanation-based learning plans in
comp]cx domains. This approach uses a simplified algo-
rithm to construct plans, and employs later rcfincmcnts

to rcl)air bugs in constructed plans. This algorithm
has the theoretical properties of completeness and con-
vcrgcncc upon soundness. This incremental rcasoniug
planning and learning algorithm has been implement,cd
using a partial-order constraint posting planner and em-
pirically  compared to a conventional exhaustive reason-
ing partial-orclcr  constraint-posting planner and learn-
ing algorithm. This comparison showed that: 1) in-
cremental  reasoning significantly rcduccd  learning costs
compared to exhaustive reasoning; 2) EBL  reduced fail-
ures from incremental reasoning; and 3) EBL with incre-
mental reasoning required less search to SOIVC problems
than EBI,  with exhaustive rcaoning.

Rcfcl’cnces
s. Bennett, 1990, “ Rcduciug  Real-world Failures of
Approximate Explanation-based Rules,” Proc.  Conf.
on Machine I,earning,  Austin, TX.
D. Chapman, “Planniug for Conjunctive Goals, 1987,
“Artificial Intelligence 32, 3.
S, A. Chicn,  1989, “Using and Refining Simplifications:
Explanation-based Learning of Plans in Iutractablc
Domains,” Proc. IJCA189,  Detroit, MI.
S. A. Chicn,  1990, “Au Explanation-based Learning
Approach to Incremental Planning,” Ph.D. Thesis,
Dcpt. of Comp. Sci., Univ. of Illinois, Urbana, 11,.
G. Collins, L. 13irnbaum, and B. Krulwich, 1989,
“An Adaptive Model of Decision-making in Planning,”
Proc. IJCA189,  Detroit, MI.
K. Hammond, Case-Based Planning: Viewing Plan-
ning as a Memory Task, Academic Press, 1989.
S. Kambhampati and S. Kcdar,  1991, “ Explauation-
based Generalization of Partially Ordered Plans,” Pro-
ceedings AA A191, Anaheim, CA.
S. Minton, I,earning  Effective Search Control Knowl-
edge: An Explanation-based Approach, Kluwcr,  Nor-
Wd!, MA, 1988.
E. Pcdnault, 1991, “ Gencraliziug  Nonlinear Planning
to Handle Complex Goals and Actions with Context-
Dcpcndcnt  Effects,” Proc. IJCA191, Sydney,  Aus-
tralia.
J. Pcmbcrthy  and D. Weld, 1992, ‘( UCPOP: A Sound,
Complete, Partial-order Planner for ADL,” Proc.  3rd
Int. Conf. on Knowledge Representation and Reason-
ing!
M. Schoppers, 1989, “ Rcpreseutation and Automatic
Synthesis of Reaction Plans,” Ph.D. l’hesis,  Dcpt. of
Comp. Sci., Univ. of Illinois, Urbana, 11,.
R. Simmons, 1988, “Combining Associational and
Causal Reasoning to Solve Interpretation and Plau-
niug Problems,” Tcchuical  Report 1048, AI Lab, Mas-
sachusetts Institute of Technology, Cambridge, MA.
G. Sussmau,  1973, A Computational Model of Skill Ac-
quisition, American Elsevicr,  New York.
P. Tadepalli,  1989, “Lazy Explanation-based Lcarniug:
A Solution to the Intractable Theory Problem,” Proc.
IJCA189,  Detroit, MI.
A. Unruh  and P. Roscnbloom,  1989, “Abstraction in
Problcm-solving  and Learning,” Proc.  IJCA 189, De-
troit, MI.


